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THRESHOLD SELECTION AND DETECTOR
PERFORMANCE WITH UNKNOWN NOISE COVARIANCE

. W. D. GREGG

93844/
Summary: Particular results of Keehn 5 are applied to the p;oblem Qf
coherent detection of white, bandlimited, stationary, gaussian signals
in additive white, bandlimited, stationary, gaussian noise with unknown
covariance. The results indicate that the critical term in the gposteriori
probabllity expression, arising from Bayes' theorem, is the Wishart density,
W(2WT,n1,01), and is maximized when the norm, | §-§i| is minimized. The
results are extended to include an illustration of threshold selection and
an evaluation of detector performance. Threshold selection based upon
estimation leads to detector performance that is a random variable. The
probability law for detector performance and the expected performance and
variance of performance are developed. Demonstration of the convergence
of the expected performance and variance of performance to the specified
performance and zero respectively is given. An approximation of the
probability law associated with a hypothesis testing variable is uged to
obtain closed form expressions. An investigation of error in the approximation

g

is included.
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I. INTR

Signal detection in digital data systems generally consists of
comparing some computed quantity with one or more thresholds in orde;
to establish the message symbol transmitted. Since message symbols are
encoded into channel symbols for modulation and transmission,‘the object
of the detection system is to process the received waveforms and to make
the decision. Processing is necessary because the channel characteristics
alter the transmitted signals.

Data processing of received waveforms is carried out with the intent
of extremizing some criterion of optimality for some available signal-to-
noise ratio, SNR, and for some specified data rate (binary digits or code
word blocks per unit time). The criterion of optimality has been generally
the maximization of the aposteriori (sometimes called forward) probability
obtained with Bayes' theorem. This criterion is exactly identical to the
information theory concept of maximizing the mutual or transinformation
relative to a source (transmitter) and a sink (receiver). Thus Bayes'

theorem specifies the data-processing structure of the detector.
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II. FORMULATION OF THE DETECTION PROBLEM
IN TRUE DECISION SPACE

The majority of the problems under consideration are centered about

such models as illustrated in Fig. 1.

m(t) s(t) st (t) Z(t) Received
Signal
Message Channel +
Symbol Symbol > CHANNEL >
Generator Generator ¥

N(t) Additive
. Noise

Fig. 1
The channel characteristics may consist of multipath propagation with
various degrees of delay for each path, multiplicative disturbances which
may vary with path delay, phase shift, and additive noise. The simplest

situation consists of additive noise and is illustrated in Fig. 2, which

Channel s(t) + Z(t)
—>Bandwidth > >
W
N(t)
Fig. 2

represents the situation under consideration.

Recognizing that a time limited function s(t) cannot be represented
exactly by a finite combination of orthonormal basis functions from a set
that is complete and closed in a harmonic extension of s(t), it is still

possible to approximaste the norm of s(t) by a finite number of terms.
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With a bandlimited assumption and invoking the sampling theorem, we see

that for a baud of duration T sec., one obtains 2WT samples. Assuming
s(t) and n(t) are sample functions from independent, stationary, gaussian,
random processes, bandlimited to W cps; they may be represented by vectors
S and N in a vector space of dimension 2WT. Since 3 = 8 + N, Bayes'

theorem is

p{s 18} -2{s} e {als} @)
8

and i=1, 2 for the binary channel.

Then for identically distributed samples, (2)
-OWT 2 L (8-5.1"At [8-5,] 2wT
. —E_ 2 2 '— =i n - = :
p{alg}-tex1 2 [a] e [ Tes,
n=1

2WT
P(E) = [P(S,) P(E]S)) + P(3,) P(E]S)] T[alg O
m=l

Thus 2WT 1 1 y -

- = -3 -3 (881" A (28]
2 2 2 " =i -—i

P(s.}[2n ]

P{Sil.z}= 24 kit IAnl e

[P(s,) P(2|s;) + P(S,) P(3]S,)] (%)

For purposes of comparing P{_S_ll 8} with P{_S_2| 2} for a given received baud,
2, the only term of importance is the exponent weighed by appropriate values
of P{§l] » P(_S_2} which are usually assumed equal for the equally probable
binary case. Thus the ith detector branch is to minimize the quantity

(8 - -S-i] ! An'l (3 - 8,]. With an additional assumption of white gaussian

processes,

R,(t) = K W sin (2n Wt
2 ° T wr ()

which has zeros at points 1 = n/2W, n=l, 2, ... . Hence sampling at

a rate 1/2W sec. yields uncorrelated and independent samples.
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The quadratic form to be minimizing thus becomes

(8-50°02-8]1 -5 (6-A)
g 2 2 - :
g, %,

The same result of uncounpling the quadratic terms could have been achieved
by "pre-whitening" requiring an orthogonal transformation on &. For a

binary channel, the detector computes |§ - _S_l ﬂ and "_1'_-_‘ - 82” and selects the

smallest. However,
2WT

2 2
2 - 5,0l = ) 22 - 2msy, o2, (6-3)
m=1

and it is necessary to have phase coherency to carry out the computation,
e.g., the receiver must have time ‘reference knowledge relative to the
received waveform amplifude. Thus minimizing the norm, (6-B), consists of
maximizing the inner product

2WT T'

Z 2, 8, = 2wf z(t) s,(t) dt i=1, 2 (1)

m=1 0 A

The detector structure for this simplified case, with known covariance,

is then a correlation computer. For the binary channel, the Bayes' detector

structure is illustrated in Figs. '3 and 4 for continuous and discrete data

processing respectively. 1 OWT
W
g(t) 1. e 18 ] 2(t )" | E L .
i: 8
1 m=1
5 (¢) , §w§§
5, (t)
2WT
1o ™ o Y,
— v, 1 ¥,
82(1: oW ki =1
Fig. 3 Fig. b
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Assuming uncorrelated signals, S_L(t) = 0; s’z(t) =s(t); O<t < T, and

in view of the assumption on s (t) and n(t), the detector computed quentities

will be random variables with means and"w;ria.nces for signal absent and.

signal present respectively,

Ely,] = 0 (8)

Ely,] = 2T o ° = 2w'.1;\(s°w) watts (9)
and

cti'l2 = 2WT Gn2 082 (10)

c¢22 = 2WT 082 [20 2 + °n2] (11)

wnich are derived in Appendix I.

Normelizing with respect to 2WT one obtains Yl and Y2. Note shat since
Yl is a linear combination of received data whereas Y2 is the sum of
squares, we have P(Y;) = N(O,onzcsa) and P(Y2) a gamma density which is
asymptotically normﬁ for large 2WT, N(osz,cs2(2652 + ona))-

The true decision space is a vector space of dimension 2WT and the
computed quantities Yl, and Y2 represents distances in the vector space
from E[Yl] and E[Ya] . 'These distances are random variables with the
aforementioned probability law and can be mapped onto the line Y

i
A sketch of the p-4 f.of Yl relative to the p.d.f. of Y2 is illustrated

, 1=1,2.

in Fig. 5.
If the parameters crs2 and °n2 are known, then a threshold, 'Ab s can be
'selected to yleld any desired false alarm probability, @, or false

dismiscal probability Bo, or for equal @ and B, according to

» A
a = f P(Y,)aY, = B= f °p(¥,)ax, (12)
(o)

Ay




2 2, 2 2
P(Y,) --- N(ol,a (207 + o))

I
|
|
|
|
!
|
|
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E(Yl)=0 | | E(Y2)= °§ Y,
AO
Fig. 5
or
- ° 1"
B =) CRY, =y o= [ R(ray (13)
o] ' A
[o]
or .A.o such tolria.t "Aa
a = f : P(Yl)le = f P(Ye)dYg = fso ()
'Ab o

for some specified @ or B where 0<a < 1, 0<B < 1.
. o e ° 7 °

It is reasonable to assume knowledge of s(t) at the receiver such that

2
cs is known. However, the covariance matrix of the additive channel noise
is not known, hence the true decision space is unknown and any threshold

selection based upon estimation leads to random detector performance.
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It is the obJect of the following section to establish the form of the
optimum Bayes'®detector structure for the case of unknown noise using
supervisory data transmissions over a bauds.

IIX. STRUCTURE OF THE OPTIMUM BAYES' RECEIVER WITH
UNKNOWN CHANNEL NOISE COVARIANCE MATRIX

In situations where additive noise is stationary or "slowly varying",
estimates of the noise covariance, A, can be made. Slowly varying can
be interpreted as that situation, such that when ample samples of a
process are taken to insure convergence in probability of the computed
statistic, no appreciable difference is observed in the computed statistic.

The estimetion properties of a parameter @ = A-l, depends upon the
sufficiency, consistency, and efficiency of the estimator é- The estimator
6 is usually some transformation or combination of samples from a population
with parameter 0, and converges to © in the limit. .The property of
convergence is utilized to reduce the uncertainty of & by reducing the
variance of 5 Thus, given a sequence of samples (-édl = -grl -_Z_r2 én

where

A model can be established where the decision on the jth baud must be
obtained with no knowledge of @ except the estimate a obtained from the

current baud and j-1 previous bauds (see Fig. 6).
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LORC S [ORORY

- Y.,Y
3 Correlation | 1’°2
() B GIFTS Computer
N(t)
P(H)=N(0,/\") ;
M. Liklihood A
> Estimator ‘ ®
51 """ Eg
Fig. 6

This model represents the situation where a supervisory period of
transmission is provided in order to establish 6 to within certain

confidence limits. The supervisory transmission implies classification

of the received signal 2 3 at the receiver on a per baud basis.
Bayes' theorem for this situation is
P(s,| 2;8) = P(5,) P(z; 48,) (15)
[P(s,} P(z,88,) + P( 8} P(2,48,)]

and is maximized when P(Z,3 Si) is maximized, thus meximizing the sposteriori

probability of S, being transmitted given the ,jth bard & and J - 1

i
previous bauds reflected in Z = 51’ ceney gj
Hovever
P(z,E5,) = P(EZ;5) PFs,) (26)
and
gzis,) - [r@zi0s,) o (17)

Since P(g §i) does not affect the decision, the Bayes' receiver must compute
only (17)-

| The first term in the integrand is

P(g Z; e;_s_i-), which is the same as P(g 6;§i), where @ is the inverse

of the covariance matrix of theprocess Z(t) when the ith signal is given.
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For the Gaussian assumption,
' -k 1/ 1 '
P(z|e:g;) = (em) 2 |o| 2 3 [ olEs])  (8)
The second term in the integrand is

P(0 | 2;8,) = P(0) P(z ] e;8,) (19)
fp(_z_l 8;8,) P(e)ae

The probability law on @, P(8), if found via the Wishart law l’2;

and using a slight modification of Keehn's result 5 to reflect apriori

knowledge is
n no-l no-k-2
0 — 1 TRn ¢ ©
P(8) = C 2 % 2 l o] & e 3 ©° (20-4)
k,n .
o
1
where ck,n = i m-q (20-B)
(o} k‘k-l) -n— r ( o] )

is the required normalizing term developed by Wishart to insure that
P(0) satisfies the axioms required of a p.d.f.

(See Appendix II for a camplete interpretation and derivation of the
results in this section).

The term @o in 20-A can be interpreted as an estimate of § based upon
n, samples from a population containing 6 or simply an initial guess
weighed by some constant n .

Using (18)
TRno < [&-8,](2-5,] >

ol

n - n _1
P(z | 8;8;) = Tl; P(Z, | 8;8,) = (2n) le] 2. 2
J (21)
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for ‘t:heug.j identically distributed.
Neglecting the ‘denominator of (19) since it only serves to normalize
,P(el_z_;gi) to satisfy }..IP(GI_Z_;_S___.L) 6y, ---d6,, =1, and using (20-A)
and (21), and combing terms

P(6|2;8,) = P(0,P(2]6;8;)

n -1 n +n-%kx-2
)

_ok,n
{Ck,no‘(Zn) 2|—§¢c| 2 Iel 2

-L»TR(no + n)e(nOQO +n< [g—gi][gréi]l > ?}

e 2 (n, + n) ' (22-4)
Thus P(elg;gi) is a Wishar® density, W(k, n;, )
with parameters
n,. =n_+n
1 o]
. - - ’ o0
o, = n o ~n<[38](2 51" > (22-B)
n +n
o]
Substituting nl,¢l into (22-A) and modifying Ck n to absorb the effects
g
0
of the substituion and retain normality yields
nl-l nl-k-z e (z2-C)

! \ - 0,8
p(elz;8;) = Ck,nll—é- 0|2 Je] T2 e 2™MA

Using (18) and (22-C), the integral of (17) is
' n-1
2
2 0

| 7 !
P(gle;s, p(6]z;8,) = (2n) Ck,n1|-§ 4’3'
1 n.~k-1
- - - ’ et m———
o 3TRI(Z-8,)(2-8;)" + n) 9,161~ (23)

In order to evaluate en integral of the form of (17), Keehn uses the

identity i k-1

—5— .~TRAO - . L
rf 6|72 o7 Taey e dyy = — (2L)
2

ck,n1|A|
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vhich yields the original quantity to be maximized

) nl-l
1 2
p(g z; 8, )- (22) 2 l'?oll
n
2810281 + no) |5 (25)
+ ny
However -E |nl I—E- + nl
L ’ l —|_¢ <l+-"‘R(ZS) zs)'«p et
E ([é‘_s_i][_‘%‘éi] + PlQl) =| 2 L " ( =, j

1

(26)
With (26), and factoring and normalizing (25) [see Appendix II starting with

P(glg;gi) =r<'-r% )(2:‘) 2 | i -<1 + 1 TR (z-s )(z-s )’ o) 1> _;
—
(Y HE T @)

which for the band-limited assumption,

K >2WT (Eaud sample size)

n

]

number of supervisory bauds currently received; range of J in the
sequence {gj}
Also,

TR(Z-5, )(E-5, )"0, = (85,00, (2-5,) (28)
Consequently the aposteriori probability is maximized when (28) is minimized.
Recalling (22-B), and the assumptions of Section II, if the estimate ¢o
is obtainedrfrom the population, or‘simply assumed to be diagonal if
¢ is a guess, ¢l-l will also be diagonal and then (28) will be minimum
when J!§7§-ill is minimized as in section II. Hence for white noise, the

Wishart density also leads to the correlation computer receiver structure

as the 6ptimum detector structure.
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Keehn's” work essentially develops the form of the Bayés’ receiver
structure for unknown covariance matrix yielding a Wishart Density in the
aposteriori probability expression. This form, assuming signal classifi-
cation on a per baud basis at the receiver, leads to the same form of
>dete¢tor stfucture in the ith receiver branch as for the case of known
covariance matrix with one exception. The exception is that the covariance
matrix @, which is a weighed average of ¢ and < [§f§i][§f§i]' >, is used
in place of the true covariance A. ¢0 répresents apriori kpowledge about A
and the term <[2-8,][2-8,]’> represents corrections to ® based upon n
samples frcm n k-variate bauds - Qo is either a guess or an,aprio?i estimate
of Abased upon né semples.

In summary, this section has thus developed the Wishart density term
of the aposteriori probability expression for the case of known signal
covariance and unknown noise covariance. It is the object of the following

section to illustrate a technique of threshold selection and to establish

the type of detector performance that might be expected.




IV. THRESHOLD SELECTION AND DETECTOR PERFORMANCE

WITH UNKNOWN NOISE COVARIANCE

For tre conditions and assumptions established in Section II,

the p.d.f.'s assoclated with the hypothesis testing variables, Y
2

1 and YZ’

were observed to be N(O,cn asz) and gamma, becoming asymptotically normal

N(csz,082(2052+0n2)), respectively. Equations (12), (13), and (1k4)
vere given to illustrate a means of selecting the threshold,_Ab, for
partitioning the true decision space when signal end noise parameters
are known.

For supervisory data transmission, it is appropriate to indicate
the threshold by A ;alnce it is to be updated at the end of each baud.
Since the noise parameter AN is not known, it is necessary to estimate
this parameter utilizing all clessiiled data available in Z, and any
other apriori knowledge available in the form of ¢o.

Recalling (22-B) and noting that

n .
< [2-2,)(8-8,i’ > =;1; y (2-8,15[2-8,14s = A (29_4)

is a weighted sum of n synmetric, kxk matrices which add up to one mtrix

with the zth diggonal elements given by

- % E;:gz -s. )z}. £=1, ...,k (29-B)

For the assumptions of white Gaussian signal and noise, the variation



« b=
about zero of the non-diagonal terrs which are estimates of the covariances
of AN’ will be of no interest.

Sampling at & rate of 1/2w will yield samples spaced in time consistent
with the zeros of the autocorrelation function and hence independent.
For the identically distributed samples (29-A) yill reduce to & scalar

matrix and assuming the same characteristics for the apriori knowledge

00 yields,
A2 A2
nh, + 1A (no"N +n°N>
AN * no +n = no +n o I (29‘C)

The combined estimate for the noise'parameter ch is then
92 n 92 + n ON
]

N n+n
(o}

(29-D)

where "N is an apriori estimate from a population containing qﬁ, based

upon n samples and GN is an estimate based upon n classified samples.

If an unbiased :2stimator 1s 1sed for both estimates, then

n, E[52]+nE[0] n o2 +n ol
E[Glfr]- N o N On 2

+n T n_+n = oy (29-E)

ana o 1s unblesed for oi. Ir 0% 15 & guess with welghting n
[o]

1t will appear as e bias but will be negligible for large n.
Selection of a threshold for some specified false alarm probability,
say ao,requires the solution of

o v-lz
1 W ea——————
q = ¢ 2 &t
° J‘”JZXMUS ZNZGS 1

n

(20-A)
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where M is the greatest upper baud, g.u.b., with confidence level P

0<p«<l
written
(n_+n) o , (o m) G2
—x—a— < oy < — = M (30-B)
Yn xI'n
1 1

if O'N2 is an estimate based upon n, apriori samples. The chi-square, x2,

X ]
quantities arise from j I‘n1 f(xz)dxe = fxﬁ f(xr‘))dx2 = l—?— s0<p<l

oy

2 - f 2 :1:}. -1 > 1 M-l 2 (51)
where'f(x)=e 2 (x°) 2 = G(x%; > 3 =)0 <x" <w
-1

(+) (32)

Ir SNQ is a guess no consistent quantatative confidence can be assigned.
(o]
Using maximum likelihood-unbiased estimation, the solution of

=1

9 or A ) =
EEN— Log Plg, .- ?-n’AN) =0 (33-4)
n
yields 3§ =% z [z -z ] where z‘ = -i— Z z, (33-B)
L 51 109
which is sufficient for Oy since
n
P(Z , Z ;0°) = % eu2§m2 Z,ja
) ey s = ewew— —
=1 =N (Von c‘w)nk =1
n
_a 20N2 [Z(z-z) +n 2]
J=1
- nk
(J_Z-f ’N) (3’*)
o1 20N2[(n-1)c +nuN]
\J—2naN)nk

~2 ~2 2
= gl(GN 2 p'N ,UN b4 O) h(_g_)
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where h(2) is independent of °N2 and degenerates to 1 in this case.
Dropping the £ subscript as & result of the identical distribution
assumption, the estimate eig is a random variable with probability

density function

n -1 n -1
A2y n2. M1 1 A2

Thus M will be a random variable with a gamma probability density and the

initial step is to solve (30-A) for A, - Rewriting (30-A) as

A n
a = %[1-ﬁ- fo JZM_Z: e'Wzdw:' = -]ei[l—erf <:’::cs )] (36)

the difficulty is immediately observed in that the error function over
a8 finite interval is an incomplete gamma function and only an approximate
solution will be possible.
Proceeding directly, there are two possible series expressions for
(36). One is an asymptotic expansion about « for large Ao , hence small
n

@_, which is found to be . <; )
(-1)"\2 /4

A s D4+1

(o) A
l _-_——L on
= = 2 2 E \
ao 2/% ) M os L=0 [ #F S (57)

L 1
with the generalized factorial term(—é— >= IT (2)+x-1), ¢>1
: L k=1 1=
=1 0

and which can be truncated with an error less than the last term used.
The other series is obtained by a direct term by term integration

of the convergent series for the integral of (36) to obtain

o A (22+1)
wo bt ) G ) o

(22 + 1) ¢
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A point solution for ‘Aon is desired as ojposed to an interval
solution. In order to obtain this from (37) or (38), a single term
truncation would be necessary which obviously is -nof satisfactory. Thus
no further useful progress using the direct approach with (37) or (38)
seems possible. However the theory of approximation suggests a change
of integrand in (30-A) with a suitable approximation in situations such

as this. Thus by approximating P(Yl) with the Laplace density function

P(Y) =5 " & “w <Y, <o (39)
1 28, 1
Mo
19 = "N a. = ——s_
- v
J2
it is possible to obtain a point solution for A, from (30-A) as
IAY
A =J—:l_ os(-Ln 2(10) I >0 (40)
n
J2 T,
which is positive since all terms are positive and ao is such that
0 < a0 <% . Furthermore, end conditions are also consistent in that,
1
for some specified ao 0; 'Abn - + o and for a3, Abn - 0 as

required (see Fig. 5).

N’ taking on new, updated,

values at the end of each received baud, it will be a random variable

Thus since ‘Aén is a linear function of 3

following (35) since coinbina.tions of gamma variables reproduce gamma
variables. Consequently, it follows that the actual probability of
false alarm, Q, will also be a random variable.

At this point it is necessary to disgress and outline the remaining
objectives. First, it is necessary to establish;, through a series of
transformations, a probability density function of a variable as
characteristic of @ as possible; then to establish the convergence

properties of the mean and variance of this variable.
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The actual value of & at any decision time is given by

_y e

o0
1
a= Jf —_— e 0,0 dY (41)
JL_Jé o N 1
S s

n

]

which yields

1,2 _ A

(L 2 ho il °l§ - ho (k2)

h = (In=_)
)

Equation (42) is written as a linear combination of a ratio of second

degree random variables which suggests the change of variable

2
A = E; where
2
2
n -1 n, -1
2 1 . 1 2
N%_)—G(&mz, 5 ,sl) 0 <S8 <o (43-A)
and
n, -1 n -1
2y _ 1 .1 2 2
P(SQ)—G(EEE’ 2952) O<S2 <
Using an identity h, the density
n -1 n, -1 n. -1 n, -1
B 1 . 1 2 1 .17, 2 2.4 2 _
£(a) = Gé '27'2 P 0 8p7) G o2 5 ~=55 8,) d8,7ds, =
a=8° N
S 2 n, -1
2 1 -1
F(nl-l) A 2
1.2 n. -1 (43-B)
{‘Gl? (ea)
is obtained.
Now let h = (In L )° (14)
ow le = n Sa = ho A
Then
. 1
P(h) = P(8) |T] |, .y |91 = 5 (45)
-ﬁ (8]
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leads to n, -1 (46)

o A -1
P(h) = P([In ']é'a]a) = [;-]-'—}_I_l T2 P(nl-l) h ° 0<h<w
- : - 1 -1
° (o) (1+->nl
From (46) and (47), using tables 5,
2 1 1
E[n] - (a1 1 r(-10) r(- ) (48-3)
[+ .
[r( "3— )]
and
SEICES br 22 (46.3)
1 ,
r)]
thus (%9)
- - n -3 +1
%= tmi 1M )r(nl PR CE S LT N i iy
___QT .

For large values of n

l’
nl‘l 1y et
R
r2(
and (51)
n -1 n +3 n_ -5 -3 nl+l
(25 r( 25 ) (2 - A =) =0
Thus in the limit, as nl -
E[h] = E[(In 5,)°] = (In -g%)? (52)
and
ch2 -0 (53)

Curves’ of E[h] / (In }2-0 )2 and ch2 / (In 1,2ao)h as a function of n,
)

are obtained from (48-A) and (49) and illustrated on Figs. 7 and 8.
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S(t)<4- 2(t)

-22.

The required receiver-detector structure for up dating 'Abn is

illustrated on Fig. 9.
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, | Baud | "1 JT 1 X
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I,oxll"(nl) (0
okup
Table "I.nl
Fig. 9

The error in approximating P(Yl) with the Laplace density

function is defined as

e =|a(t) - aft)] (54)
where o
@ 3 P 1 X2
Ian(t)-aL(t)|=|LJﬁevdv—ftfz-e vdvl( |
55

and is plotted as a function of ao in Fig. 10.
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V. CONCLUSION

For the assumption of a gaussian signal in additive gaussian noise,
with unknown covariance, the results of Section III indicate that the critical
term in the aposteriori probability expression arrived at through Bayes'
theorem is the Wishart density, W(2WT, nl,®l), with parameters nl’Ql as
defined. With the additional assunptions of white, bandlimited signal and
noise, classified data at the receiver, and the discussion in Section IV,
it was shown that even with the Wishart form, the aposteriori probability
is maximized when the norm, “2¥§ilL is minimized, leading to the correla-
tion computer structure. The results of Section III were used to
illus trate the up dating of A, with classified estimatés.

Section IV introduced a technique for selecting a thresho.’Ld,_A.,O s
for hypothesis testing. It was shown that actual detector performange,
, would be a random variable with a mean and variance that converges to
the specified performance, ao, and zero respectively. For the case of
apriori knowledge of An based upon sample size L Figsw 7 end 8 may be

1
entered at a point nO + n, to establish the uncertainty of performance

1
resolved by apriori knowledge. If Ao is a guess, no confidence can be assigned,
and the convergence properties, as established, will not hold.

The curves in Figs. 7 and 8 are normalized with respect to Ln l/Ea0

to illustrate convergence properties independent of SNR. The results
indicate that with no apriori knowledge, 23 supervisory bauds are sufficient
to yield expected performance to within 10% of specified performance and

97 bauds yield expected performance to within 2% of specified performance.

The normalized variance of performance is down to 25% by the ?3rd baud and
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decreases to 4.5% in 99 bauds. The convergence characteristics of the 99
percentile upper confidence limit for a weighed sample variance and a weighed
variance of a sample variance are included for comparison. The rapid
convergence of E[h]/(Ln 1/21:10)2 for smell values of ny is due to the
difference of gamma functions in the expression for E[h].

The error, ¢ in computing actual & due to the approximation ranges

1

from 2.2 for specified @ = 10°% to .15% for a_ = 3.X10"°, indicating

the nature of the Laplace density as an approximation in this case.
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APPENDIX I
The terms in Bsyes' theorem for the gaussian case are obtained by
considering the conditiénal probability that the mth recefléd sémpie falls

in an interval dzm as

| m 1
da
P {zml sin} = P(2 '31 )dzm :/%— e 5 2 Zm (1-1)
m 2r°N 20

vhich for sample size ZWI of identically distributed samples

-zwl |-1 1 P Y
== 5 5l8-8,1'A "(8-8,) F
P(gls,) =[z«] @ An! 2 g2 =1 - ﬁdzm (1-2)
m=l
Likewise
2WT 2 2wy
P{g} - P@)TT az_ = Z P(2,8, )T az,
m=1 i=1 m=1
2 -
- izl R(s,) P(glgi)] T ez,

= r P(s,) P(&|8;) + P(8,) P(& l§2)] fll' az (1-3)
and P{gi Ig} follows as in (4).
The means and variances of the detector compiited hypothesis
testing variables are found as follows.
The detector branch matched for s(t) will compute variables ¥ and 4,

depending upon whether signal is absent or present respectively.

{oa() wedee) anl- ) 2l

m=l m=1 m=
2WT

3 sl

m=1

Thus
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for identically distributed, 2WT variate, zero mean samples ‘where

signal and noise are independent.

(] Aend oo {3

_OWT OWT  2WT i )
DL R

o =1 m=1 k=1
= z E [nmesmg] + Z Z E l:nmsmnksk}

m=1 m=1i€L%mk=l

2WT ZWT 2WT
DIEIES S IR NI LIS E [N O
mel m=1 #k_
= 2WT 6§ o +0 (1-5)

where sampleg m, k are uncorrelated and hence independent.

{u]- 43 el A T £onn] D 4] Al el

=1 =1

OWT o§ = owr S W WATTS (1-6)

for the zero mean assumption.

] -

n
l__“l
Paw
ﬂﬂ
m
V
I__J
r—
/'\
ftn
+
1=
-
CO
u
;___.l
=
|
Py
1t
17}

+
1=
lo
\./m

| I |

E[(_s_’§> +2(8’8)(m'8) + (N §)2]

1e9°) 24 gD+ § 0’ (1-7)

Now

CHRVENERPEDPEH

pm




- oD, + 2Wr(2WI-1) af cf (1-8)
For the zero mean gaussian assumptions, the rth raw moment is

“; - 10505-00(1'/‘1) Ur, hence

Wy, = 30 (1-9)
and
a{(g 'g)a] - 20T (30)) + 2WT (21-1) o (1-10)
ED@D[=8) o ) naj=0) 0m+) ) ofny
m=1 k=1 m=1 n-:":-l
2T 2WT 2WT
DI LA ER (S EESE Y
m=] m-:.»‘ :-1
2wr
=) {2 dn] o
w1
=0 (1-11)
rrem (1-5), 8 (1'8)°] = 2wt of o (1-12)

‘Hence from (I-7), (I-10), (I-11) and (I-12),

l{t:] = 2WT (Ba:‘) + 2wr (2wr-1) c:' + 2WT af oﬁ (1-13)

The variances are
oil- z[vf] - 82['1] -2 o oF - 0 (1-14)

RL CIRTIE
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APPENDIX II

Using Baye's theorem, the aposteriori, probability for the binary

case is P{_S_i IE;E} = P{ﬁi} P(2, 28,) (11-1)
2
S, + P(Z,3 | 8,)
z {s,} ;

which is maximized when P(Z, 2 |§i) is maximum.

T

But
8,) = P3|z 8) P(Z][8,) (11-2)
and

P32 5,) - [ R3]z 6, 5,) Bz 5,) a0 (11-3)
where 8 is the inverse of the covariance matrix of the random process
Z(t) when the ith signal is present. The term P(3 |Z; O, §i) is the
seme as P(3]| 6; S ) and

R L(zs 1" 6 (2-8,]
P(2 | 0;8;) = (2x) lel?e 21272 22 (II-k)

The remaining team in the integrand is

P(0|2;8,) = P(0) P(Z | 6; 8,) (11-5)

fp(g_ | 855, )P(0)ae

and

Zl
&, = 27 S -
gl M| oz-{z 2,8} (11-6)
Zk .
3
P(8) is found via the wishart law, which in this case is the n variate
p\ s
analog of taking £(8") written as
1 (II-7)
A2 k- 1\7 5 ‘o2 ) A2
0'31/0'2)= < <g?> e 0<0 <w

I‘()

p‘.‘
P\‘
f

[




k -32-

where & = Z [(z'si);l_' @5]2

=1

k-1
and normalizing by introducing a term ¢ to insure

f c£(8%;1/0%) ap = 1 (11-8)
o)
where p = 1/c2
thus n n -1 n _-k-2
.52 °2 02 - —2— TRn, o, 0
P(8) = Ck,nc | o, | | of e
| (11-9)
where Ck n is the required normalizing term developed by Wishart
)
o
c (11-10)

= 1
k,n 3 n -q
° k(k-1) ()
ST ()

and @, and 6 are the multivariate analogs of 32 and 1/02 respectively.
°o is an estimate of 6 based upon no initial samples from e population
containing 6 with confidence consistent with n, or Oo is simply an
initial guess welghted by n,:

Using (II-4) ‘

n n -k 1
P(z | 0:8,) -gﬂl' P(g,] 08, ) -;ﬂ; (2x) 2o~ °©

3

-nk n 1 )
& 2 -3m™ne<(s8]Es8)">
-(2n)2|0|2e 2 i 1
(11-11)
for the gJ identically distributed, with
n
- ’ 1l ’

<(ggligs] >=1 ) @s,),@8), (11-12)

J=1
Neglecting the denominator of (II-5) since it only serves to normalize

P(e |§;§1) to satisfy \/‘de = 1 and using (II-9), (II-1),



P(elz;8,) = P(0) P(2l6 8,)

n_-1 n -k-z 1
c, |=2¢ |Tzlel| 2z e
k,n '2 o© nk 1 p
° - = - 5 TR no <[2-8,1[2-8,T >
(2x) le |
n_ Doml o mghm-k-Z gy —(TR n 6 O+TRn <[2-8,1(2-5,1'>)
= ck,nol'z—'% 21 e |” 2 (ex)
ok o Bt BeMTRZ L 2am e(n 0 m <[2-8,1(2-5,)>)
= Ck,no(Zx) 2 |-2- @ol z |e]|” 2 e
nk n n,-1 n tn-k-2 i TR(n +n)9(n ¢ +n <[Z- 1[2-8 ]/>)
=c__(ex) 2 |=¢]2 |6 z e 2 —=
k,n 2 o (n +n)
o] [o]
(I1-13)
Thus P(9|g§§i) is a Wishart density, W(k,nl,¢l) with perameters |
nl = n°+n
/
¢ =n8m < [E-5][&-5]) > (II-14)

n_+4n
o]

Substituting n, Ol into (II-13) and modifying Ck n to absorb the effects
2
o]
and retain normality ew
ln1 ! L ol k-2 L'TR n, 9 6

2

P(6]2;8,) = o | z le T2 e (11-15)

Using (II-4) and (II-15), the integral of (II-3) is

P(gle;S,) P(6]2;8,) =

ki, -pmelEslizgl” 0 owm A A
(2x)" 2| o] “e Ck,nll'z_"’ll 2 | e| 2 XN
-1TRn o e
2 v H
-1 1 . -k-2
k "t = TR[ (3-8, (2-
= (2x)2 C [-nle 2 el HE8 (&5,) wm0,] eI elnlz
k,n1 2 1

(11-16)
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Using (II-16) into (II-3)

-_}_;_ n]_"l nl-k-
P(gl_z_;§1)=(an)ackn| fflel
1
(11-17)
1 }
ll [ B BN kk
But an identity formulated by Cramer has
,- (11-18)
k1 rrag .
fflel a8, --.. a8 = 1 n
C n a2
|
Thus
@lzs) - e s o Do [
P(3|2;8,)=(2x)2 ¢, _|to |72 1
al k,n1 2 1 T ’
Cy nll 2 ((2-8,1(8-8,]) “4n, 0
_ nl =1
= (x) 2|2 °1| 2 . (11-19)
1 L
1% (25,025, + ny0) |
“Assuming 01 is non singular, ¢1'l exists, and hence
1 , l n
ny
(11-20)
Factoring the numerator of (II-19) and substituting (II-20) yields
e N e e
P(2:8,) = ()22 o | 2|2 o |2
o S S |
| (2-5,](2-8,]"0, +I |2 |Z o |2
n
x M
=(x)2]2 o (11-21)
e}
| 2-5,118-8,1" __1_ + 1|2

n

=

N

=

o2
2
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For the conditions of the derivation, the identities (5[1-22)

1L +
2

‘o7t + - ( n, TR(z-§, N2-8,) ot +1)
1 i =i 1

| (25,1028, 17 0" + 1|

n

=

Holds, thus

k
P(zlz;8,) = (2) 7z lo,” % 1+

V] [ o

and when normalized, becomes
e’}
-ll 2

k -1 -
P(ElZ8,) - T( 2 ) (20) Z [0 2 0 n TR(E-3)(E5,) o)
n, -

1
k 1/
r(-2-) (52) 2

(11-24)
Thus (II-1) is maximized when (II-24) is meximized, which occurs for
nimm val TR(2-8, )(2-8, ) ¢t
mi values of -8, \&-5, 1
But
TR(Z-S, )(2-8,) 0.1 = (2-8. Y o."' (2-8.) (1I-25)
2-5,)18-5,) & 25,) ¢ " &5



